|
|
Complex Approximations, Orthogonal Polynomials and Applications Workshop
7 июня 2021 г. 11:45–12:25, г. Сочи
|
|
|
|
|
|
Pointwise Remez inequality
P. M. Yuditskii Institute of Analysis, Johannes Kepler University Linz
|
Количество просмотров: |
Эта страница: | 85 |
|
Аннотация:
The classical Remez inequality provides an exact estimate for a polynomial on a given interval if it is known that the polynomial is bounded by one on a subset of this interval of the given Lebesgue measure. To be precise, let $\Pi_n$ denote the set of polynomials of degree at most $n$. For a subset $E$ of the interval $[-1,1]$ let
$$
\Pi_n(E):=\{P_n\in \Pi_n:\ |P_n(x)|\le 1,\ x\in E\}.
$$
The Lebesgue measure of $E$ is denoted by $|E|$. For $\delta\in(0,1)$ we define
$$
M_{n,\delta}=\sup_{E:|E|=2-2\delta}\sup_{P_n\in\Pi_n(E)}\sup_{x\in[-1,1]}|P_n(x)|.
$$
According to Remez $M_{n,\delta}=T_n\left(\frac{1+\delta}{1-\delta}\right)$, where $T_n(z)$ is the classical Chebyshev polynomial, $T_n(z)=\frac 1 2(\zeta^n+\zeta^{-n})$,
$z=\frac 1 2 (\zeta+\zeta^{-1})$.
Since the mid-90s, based on the previous results of T. Erdélyi, E. B. Saff and himself, at several international conferences Vladimir Andrievskii raised the following problem. Find
$$
L_{n,\delta}(x_0)=\sup_{E:|E|=2-2\delta}\sup_{P_n\in\Pi_n(E)}|P_n(x_0)|, \quad x_0\in [-1,1].
$$
Note that $\sup_{x_0\in[-1,1]}L_{n,\delta}(x_0)=M_{n,\delta}$.
In the talk we present a solution of Andievskii's problem on the pointwise Remez inequality.
Язык доклада: английский
Website:
https://us02web.zoom.us/j/8618528524?pwd=MmxGeHRWZHZnS0NLQi9jTTFTTzFrQT09
* Zoom conference ID: 861 852 8524 , password: caopa |
|