Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Коллоквиум Факультета компьютерных наук НИУ ВШЭ
18 мая 2021 г. 16:20–17:40, г. Москва, Покровский бульвар 11
 




[Bruhat interval polytopes which are cubes]

Mikiya Masuda

Количество просмотров:
Эта страница:161
Youtube:

Mikiya Masuda



Аннотация: For a pair of permutations with $v\le w$ in the Bruhat order, the Bruhat interval polytope $\mathsf{Q}_{v,w}$ is defined as the convex hull of points associated with permutations $z$ for $v\le z\le w$. It lies in a permutohedron and is an example of a Coxeter matroid polytope.
The Bruhat interval polytope $\mathsf{Q}_{v,w}$ is the moment polytope of some subvariety of a flag variety called a Richardson variety and it is known that the Richardson variety is a smooth toric variety if and only if $\mathsf{Q}_{v,w}$ is combinatorially equivalent to a cube.
In this talk, I will explain that a certain family of Bruhat interval polytopes, which are particularly combinatorially equivalent to a cube, determines triangulations of a polygon. It turns out that the Wedderburn-Etherington numbers which count unordered binary trees appear in their classification. If time permits, I will discuss another family of Bruhat interval polytopes and their classification, where directed paths, more generally directed Dynkin diagrams appear.
This talk is based on recent joint work with Eunjeong Lee (IBS-CGP) and Seonjeong Park (Jeonju Univ.).

Язык доклада: английский

Website: https://cs.hse.ru/announcements/468719435.html
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024