Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Динамические системы и уравнения с частными производными
12 мая 2021 г. 17:00, (this is Moscow time, CET=16:00), zoom identificator 985 4188 9798, password 933727
 


Growth of Sobolev norms for unbounded perturbations of the Laplacian on flat tori (towards a quantum Nekhoroshev theorem)

D. Bambusi

Dipartimento di Fisica, Università degli Studi di Milano, Milano
Видеозаписи:
MP4 343.6 Mb
Дополнительные материалы:
Adobe PDF 542.3 Kb

Количество просмотров:
Эта страница:201
Видеофайлы:16
Материалы:5



Аннотация: I will present a study of the time dependent Schrödinger equation
$$ -i\psi_t=-\Delta\psi+{\cal V}(t,x,-i\nabla)\psi $$
on a flat $d$ dimensional torus. Here ${\cal V}$ is a time dependent pseudodifferential operator of order strictly smaller than 2. The main result I will give is an estimate ensuring that the Sobolev norms of the solutions are bounded by $t^{\epsilon}$. The proof is a quantization of the proof of the Nekhoroshev theorem, both analytic and geometric parts.
Previous results of this kind were limited either to the case of bounded perturbations of the Laplacian or to quantization of systems with a trivial geometry of the resonances, lik harmonic oscillators or 1-d systems.
In this seminar I will present the result and the main ideas of the proof.
This is a joint work with Beatrice Langella and Riccardo Montalto.

Дополнительные материалы: Bambusi 12.05.2021.pdf (542.3 Kb)

Язык доклада: английский

Website: https://mi-ras-ru.zoom.us/j/98541889798?pwd=SGdnT2lPWCtrbzNjOHQyb09NS0dXdz09
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024