|
|
Общемосковский постоянный научный семинар «Теория автоматического управления и оптимизации»
20 апреля 2021 г. 11:30–13:00, г. Москва, вебинар ZOOM, идентификатор конференции 425 322 745 Для получения ссылки и пароля напишите e-mail на stefa@ipu.ru (+копия ipuranseminar@gmail.com).
|
|
|
|
|
|
Чебышевский центр множества: свойства и вычисление
М. В. Балашов Институт проблем управления им. В. А. Трапезникова РАН, г. Москва
|
Количество просмотров: |
Эта страница: | 184 |
|
Аннотация:
Чебышевский центр замкнутого ограниченного множества — это множество центров шаров минимального радиуса, содержащих данное множество. Известно, что в гильбертовом пространстве чебышевский центр выпуклого замкнутого ограниченного множества одноточечный и принадлежит множеству (т.е. буквально является точкой из этого множества).Также чебышевский центр является непрерывной в метрике Хаусдорфа однозначной ветвью (иначе — селектором) выпуклых замкнутых ограниченных множеств в гильбертовом пространстве.
Мы обсудим некоторые свойства чебышевского центра, связанные с сильной выпуклостью множеств, а также способы его вычисления. Для евклидовых пространств малой разметности чебышевский центр может быть эффективно вычислен с помощью решения задачи линейного программирования.
|
|