Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Графы на поверхностях и кривые над числовыми полями
27 мая 2020 г. 18:30–19:30, г. Москва, online
 


On the Belyi height

G. B. Shabatab

a Russian State University for the Humanities, Moscow
b Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre «Kurchatov Institute»

Количество просмотров:
Эта страница:259

Аннотация: Belyi height of a complex curve is defined as the smallest possible degree of a Belyi function on it. For a fixed genus it is considered as a function on the moduli space; according to Belyi theorem, the Belyi height of a curve is finite if and only if the curve is defined over the field of algebraic numbers.
Belyi height will be compared with the other heights and with the Kolmogorov complexity. Some examples due to the speaker and to Leonardo Zapponi will be presented. The recent result by Ariyan Javanpeykar and John Voight on the algorithmic computability of the Belyi height will be formulated and the algorithmic aspects of the passport realizability discussed.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024