Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Динамические системы и уравнения с частными производными
24 марта 2021 г. 18:00, (this is Moscow time, CET=16:00), zoom identificator 933 5963 5486, password 348742
 


Geodesic scattering on hyperboloids and Knoerrer’s map

A. P. Veselovabc

a Department of Mathematical Sciences, Loughborough University
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
c Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Видеозаписи:
MP4 270.9 Mb
Дополнительные материалы:
Adobe PDF 401.6 Kb

Количество просмотров:
Эта страница:341
Видеофайлы:26
Материалы:9



Аннотация: Geodesic flow on ellipsoids is one of the most celebrated classical integrable systems considered by Jacobi in 1837. Moser revisited this problem in 1978 revealing the link with the modern theory of solitons. Surprisingly a similar question for hyperboloids did not get much attention, although the dynamics in this case is very different.
I will explain how to use the remarkable results of Moser and Knoerrer on the relations between Jacobi problem and integrable Neumann system on sphere to describe explicitly the geodesic scattering on hyperboloids. It will be shown also that Knoerrer's reparametrisation is closely related to the projectively equivalent metric on a quadric discovered in 1998 by Tabachnikov and, independently, by Matveev and Topalov, giving a new proof of their result. The projectively equivalent metric (in contrast to the usual one) turns out to be regular on the projective closure of hyperboloid, which allows us to extend Knoerrer's map to this closure.
The talk is based on a recent joint work with Lihua Wu.

Дополнительные материалы: Veselov 24.03.2021.pdf (401.6 Kb)

Язык доклада: английский

Website: https://zoom.us/j/93359635486?pwd=SGRUbUJ4bXRNTitKdmVwdllIMEtMZz09
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024