|
|
Дифференциальная геометрия и приложения
21 сентября 2020 г. 17:45–19:20, г. Москва, ГЗ МГУ, ауд. 16-10
|
|
|
|
|
|
Равномерные асимптотические формулы в виде специальных функций в окрестности стандартных и нестандартных каустик в задачах с биллиардами с полужесткими стенками
А. Ю. Аникин, С. Ю. Доброхотов, В. Е. Назайкинский, А. В. Цветкова |
Количество просмотров: |
Эта страница: | 216 |
|
Аннотация:
В недавних работах авторов было показано, что асимптотические собственные функции оператора ∇ D(x) ∇ в ограниченной области X на двумерной плоскости с равной нулю на границе ∂X гладкой положительной внутри X функцией D(x) связаны с так называемыми бильярдами с полужесткими стенками. Также были приведены примеры интегрируемых бильярды такого типа и соответствующие «нестандартные» торы Лиувилля, проекции которых из фазового пространства на область X ограничена стандартными и нестандартными каустиками (во втором случае- это граница ∂X). В этом докладе мы обсуждаем общий конструктивный подход построения равномерных асимптотик в окрестности таких каустик в виде функций Бесселя и Эйри. В частности, мы показываем, что ответ представляется в параметрической форме, причем естественными параметрами в записи ответа являются координаты на соответствующих торах Лиувилля (лагранжевых многообразиях).
Работа поддержана грантом РНФ (проект 16-11-10282).
|
|