Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Современные проблемы теории чисел
18 марта 2021 г. 12:45, г. Москва, ZOOM
 


On energies of subsets of combinatoral cubes and varieties

И. Д. Шкредов

Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
Видеозаписи:
MP4 198.8 Mb

Количество просмотров:
Эта страница:285
Видеофайлы:43



Аннотация: We are going to talk about two questions having in common that in both of them we obtain a series of non–trivial upper bounds for some energies of subsets. The first one is purely combinatoral and we derive an upper bound for the energy of any subset of classical multiplicative / additive combinatoral cube, that is the expression of the form $\sum_{j=1}^d \epsilon_j a_j,$ where $\epsilon_j \in {0,1}$ and $a_j$ are fixed. In the second problem we take an affine or a projective variety $V$ in an algebraic group, $V$ has no large (algebraic) subgroups and obtain that any $A\subseteq V $ enjoys a non-trivial saving for its energy. In both proofs some additive-combinatorial methods are used, there is an application to the restriction problem.  
Conference ID: 942 0186 5629 Password is a six-digit number, the first three digits of which form the number p + 44, and the last three digits are the number q + 63, where p, q is the largest pair of twin primes less than 1000.

Website: https://mi-ras-ru.zoom.us/j/94201865629?pwd=aUlIbFBFelhFTjhnUnZtdTNFL1IvZz09
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024