Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Узлы и теория представлений
8 марта 2021 г. 18:30, г. Москва, Join Zoom Meeting ID: 818 6674 5751 Passcode: 141592
 


Integer Geometry

Mehdi Golafshan

Количество просмотров:
Эта страница:105

Аннотация: In many questions, the geometric approach gives an intuitive visualization that leads to a better understanding of a problem and sometimes even to its solution. In the advanced mathematics we give an interpretation of the elements of continued fractions in terms of integer geometry, with the continued fractions being associated to certain invariants of integer angles. The geometric viewpoint on continued fractions also gives key ideas for generalizing Gauss–Kuzmin statistics to studying multidimensional Gauss’s reduction theory, leading to several results in toric geometry. The notion of geometry in general can be interpreted in many different ways.
In this book we think of a geometry as of a set of objects and a congruence relation, which is normally defined by some group of transformations. For instance, in Euclidean geometry in the plane, we study points, lines, segments, polygons, circles, etc., with the congruence relation being defined by the group of all length-preserving transformations O(2, R) (the orthogonal group). The aim of this course is to introduce basic ideas of integer geometry.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024