Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Городской семинар по теории вероятностей и математической статистике
12 марта 2021 г. 18:00–20:00, г. Санкт-Петербург, zoom 841 5298 7705
 


On the defect ("signed area") of toral Laplace eigenfunctions and exponential sums

Игорь Вигман

Количество просмотров:
Эта страница:220

Аннотация: Язык доклада – русский
This talk is based on a joint work with P. Kurlberg and N. Yesha. The defect (also known as "signed area") of a real-valued function defined on a two-dimensional domain is the difference between its positive and negative regions. We are interested in the defect of toral Laplace eigenfunctions (exponential sums) restricted to Planck-scale shrinking subdomains ("shrinking balls"). It is proved that, under a flatness assumption on the exponential sums, the defect asymptotically vanishes on the set of balls centres of almost full measure, for a generic sequence of energy levels. To establish our results we start from Bourgain's de-randomization technique, borrow the Integral-Geometric sandwich from Nazarov-Sodin, and also invoke other techniques.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024