Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Общеинститутский математический семинар Санкт-Петербургского отделения Математического института им. В. А. Стеклова РАН
26 января 2009 г. 13:00, г. Санкт-Петербург, ПОМИ, комн. 311 (наб. р. Фонтанки, 27)
 


Комбинаторная теория чисел

И. Д. Шкредов

Москва
Видеозаписи:
Real Video 239.8 Mb
Windows Media 256.3 Mb
Flash Video 1,442.6 Mb
MP4 695.3 Mb

Количество просмотров:
Эта страница:1349
Видеофайлы:682

И. Д. Шкредов



Аннотация: В докладе мы расскажем о новой бурно развивающейся области современной математики — комбинаторной теории чисел или аддитивной комбинаторике. Эту науку можно определить, грубо говоря, как изучающую комбинаторные вопросы, связанные с групповой структурой.
Истоки данной области, возводят, чаще всего, к классической теореме А. Л. Коши о сложении множеств в группе $Z/pZ$ (мощность суммы множеств $A$ и $B$ либо равна $p$, либо не меньше, чем $|A|+|B|-1$), также к теореме И. Шура о уравнении $xn+yn\equiv zn$ $(\operatorname{mod}p)$ и, конечно, к теореме Б. Л. Ван дер Вардена о монохроматических арифметических прогрессиях. Что касается приложений, то первое из них было получено Л. Шнирельманом в 1930 году, который доказал, что всякое натуральное число, начиная с двойки, является суммой ограниченного числа простых.
Теорема Ван дер Вардена, названная А. Я. Хинчиным «жемчужиной теории чисел» имела, безусловно, наибольшее влияние на всю рассматриваемую область. Непосредственно с последней связаны теорема Е. Семереди (1969) о арифметических прогрессиях, а также создание Х. Фюрстенбергом, так называемой «комбинаторной эргодической теории» (1971). В последнее время в аддитивной комбинаторике наблюдается значительный всплеск активности, связанный, прежде всего, с появлением количественных результатов об арифметических прогрессиях Т. Гауэрса (2001), оценок для сумм произведений Бургена–Каца–Тао (2003) и, конечно, потрясающего результата Грина–Тао (2004) о существовании в множестве простых чисел прогрессий произвольной длины.
Мы планируем рассказать о имеющихся в данной науке результатах, а также о ее связях с эргодической теорией и комбинаторикой.
См. также
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024