Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар по геометрической топологии
19 марта 2021 г. 17:00–20:00, г. Москва, Zoom
 


$M_5$ и $M_3$-инварианты для ориентированных зацеплений

П. М. Ахметьев

Количество просмотров:
Эта страница:312
Youtube:



Аннотация: $M_3$-инвариант - это комбинаторный инвариант для $3$-компонентных ориентированных зацеплений $L\subset \mathbb R^3$, который не выражается через попарные коэффициенты зацепления компонент и удовлетворяет асимптотическому уравнению:
$$ M_3(\lambda L) = \lambda^{12} M_3(L),$$
где $\lambda L$ определено как $\lambda$-кратная обмотка зацепления $L$, $\lambda \in \mathbb Z$.
Известна гипотетическая формула, выражающая $M_3$-инвариант через многочлен Конвея зацепления $L$. План доказательства этой формулы состоит в том, что мы заменяем комбинаторный инвариант $M_3$ его аналитическим выражением, которое называется $M_3$-интеграл. Этот интеграл можно рассматривать, более или менее, как обобщение интеграла Гаусса для коэффициентов $(i,j)$ зацепления компонент.
Выпишем формулу $M_3$-интеграла. Доказательство корректности $M_3$ происходит по той же схеме, что и проверка корректности интеграла Гаусса при изотопии зацепления. Обобщим $M_3$-интеграл и определим $M_5$-интеграл. $M_5$-интеграл определен для $5$-компонентного ориентированного зацепления с предписанным циклическим порядком компонент. Дополнительно предполагается, что десять попарных коэффициентов зацепления компонент $(i,j)$ удовлетворяют соотношениям: $(i,i+1)=p$, $(i,i+2)=q$. Получится комбинаторный инвариант, явное выражение которого автору не известно.
Интеграл $M_5$ направлен на вычисления для прикладной задачи из классической электродинамики [A]. Вычисления целесообразно проводить для инвариантов $M_3$ и $M_5$ параллельно.

Подключение к Zoom'у: https://mi-ras-ru.zoom.us/j/98442461141
Код доступа: эйлерова характеристика букета двух окружностей

Статьи по теме:
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024