Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Динамические системы и уравнения с частными производными
24 февраля 2021 г. 18:00, (this is Moscow time, CET=16:00), zoom identificator 933 5963 5486, password 348742
 


The Furstenberg theorem : adding a parameter and removing the stationarity (On a joint work with A. Gorodetski)

V. A. Kleptsyn

Institute of Mathematical Research of Rennes
Видеозаписи:
MP4 341.5 Mb
Дополнительные материалы:
Adobe PDF 5.5 Mb

Количество просмотров:
Эта страница:295
Видеофайлы:26
Материалы:9



Аннотация: The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices from SL(n,R); their norms turn out to grow exponentially. In our joint work, we study what happens if the random matrices from SL(2,R) depend on an additional parameter. It turns out that in this new situation, the conclusion changes. Namely, under some natural conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.
Another direction of the generalization of the classical Furstenberg theorem is removing the stationarity assumption. That is, the matrices that are multiplied are still independent, but no longer identically distributed. Though in this setting most of the standard tools are no longer applicable (no more stationary measure, no more Birkhoff ergodic theorem, etc.), it turns out that the Furstenberg theorem can (under the appropriate assumptions) still be generalized to this setting, with a deterministic sequence replacing the Lyapunov exponent. These two generalizations can be mixed together, providing the Anderson localization conclusions for the non-stationary 1D random Schrodinger operators.

Дополнительные материалы: Kleptsyn 24.02.2021.pdf (5.5 Mb)

Язык доклада: английский

Website: https://zoom.us/j/93359635486?pwd=SGRUbUJ4bXRNTitKdmVwdllIMEtMZz09
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024