Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар международной лаборатории алгебраической топологии и ее приложений (АТиП)
17 апреля 2020 г. 18:10, г. Москва, ВШЭ. Покровский бульвар, 11, корпус Т, каб. Т909. Четверг 18:10-19:30
 


Факторизация торических отображений и поиск общего подразбиения треугольника

А. Ю. Перепечкоab

a Институт проблем передачи информации им. А.А. Харкевича Российской академии наук, г. Москва
b Московский физико-технический институт (национальный исследовательский университет), Московская облаcть, г. Долгопрудный

Аннотация: В 1978 году Тадао Ода выдвинул гипотезу о сильной факторизации морфизмов торических многообразий: Любое торическое (т.е. эквивариантное) бирациональное отображение между двумя полными гладкими торическими многообразиями X и Y раскладывается в композицию цепочки торических раздутий и цепочки торических стягиваний (операций, обратных к раздутиям). Комбинаторно полное торическое многообразие описывается полным веером рациональных полиэдральных конусов, а раздутие - подразбиением этого веера. Известно, что любое торическое бирациональное отображение описывается цепочкой таких подразбиений и обратных к ним - это слабая факторизация. Гипотеза Оды же гласит, что можно их упорядочить, произведя сначала все подразбиения, а потом - обратные операции. В частности, для вееров многообразий X и Y существует общее подразбиение, описывающее отображение между многообразиями. В трёхмерном случае гипотеза сводится к существованию общего подразбиения у любой пары подразбиений треугольника (т.е. двумерного симплекса). В 2009 году в работе Сильвы и Кару (arXiv:0911.4693) был предложен алгоритм, который гипотетически всегда находит общее подразбиение. Мы опишем, как устроены подразбиения треугольника, соответствующие раздутиям трёхмерных торических многообразий, и разберём данный алгоритм. На практике этот алгоритм можно упростить, и задача поиска наименьшего общего подразбиения вычислительно сложна. Теоретически, общее подразбиение могло бы служить секретом, восстанавливаемым по паре заданных подразбиений. Я предлагаю слушателям обратную задачу: придумать эффективный алгоритм подбора по случайным образом сгенерированному секрету такой пары подразбиений, чтобы секрет являлся их наименьшим общим подразбиением. Подобный алгоритм дал бы одностороннюю функцию, возможно, пригодную для нужд криптографии.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025