Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Группы Ли и теория инвариантов
9 апреля 2008 г., г. Москва, ГЗ МГУ, ауд. 13-06
 


Подсчет числа точек на однородных пространствах над конечным полем (по работе M. Brion, E. Peyre)

Д. А. Тимашёв

Количество просмотров:
Эта страница:146

Аннотация: Определение числа $F$-рациональных точек на алгебраическом многообразии $X$ над конечным полем $F=F(q)$ является важной задачей алгебраической геометрии, имеющей приложения в арифметике алгебраических многообразий и теории чисел. К глубоким результатам об этих числах относятся формула следа Гротендика и доказательство гипотез Вейля о дзета-функциях, данное Делинем.
Оказывается, в случае, когда $X$ — однородное пространство линейной алгебраической группы, можно элементарными средствами доказать, что число $F(q^n)$-рациональных точек на $X$ задается периодическим полиномом от $q^n$, т.е. существует такое число $N$ и последовательность полиномов $P_0,\dots,P_{N-1}$, что
$$ |X(F(q^n))|=P_r(q^n), $$
где $r$ — остаток $n$ $\mathrm{mod}\,N$. В доказательстве используются идеи теории инвариантов конечных групп.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024