Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция «Analytic Theory of Differential and Difference Equations», посвященная памяти академика А. А. Болибруха
29 января 2021 г. 19:30, г. Москва, онлайн
 


Geometry of hyperbolic Cauchy–Riemann singularities and KAM-like theory for holomorphic involutions

Laurent Stolovitch

Université de Nice Sophia Antipolis
Видеозаписи:
MP4 260.0 Mb
Дополнительные материалы:
Adobe PDF 305.5 Kb

Количество просмотров:
Эта страница:214
Видеофайлы:18
Материалы:21



Аннотация: This joint work with Z. Zhao (Nice) is concerned with the geometry of germs of real analytic surfaces in $(\mathbb{C}^2,0)$ having an isolated Cauchy–Riemann (CR) singularity at the origin. These are perturbations of Bishop quadrics. There are two kinds of CR singularities stable under perturbation : elliptic and hyperbolic. Elliptic case was studied by Moser–Webster who showed that such a surface is locally, near the CR singularity, holomorphically equivalent to normal form from which lots of geometric features can be read off.
In this talk we focus on perturbations of hyperbolic quadrics. As was shown by Moser–Webster, such a surface can be transformed to a formal normal form by a formal change of coordinates that may not be holomorphic in any neighborhood of the origin.
Given a non-degenerate real analytic surface $M$ in $(\mathbb{C}^2,0)$ having a hyperbolic CR singularity at the origin, we prove the existence of Whitney smooth family of holomorphic curves intersecting $M$ along holomorphic hyperbolas. This is the very first result concerning hyperbolic CR singularity not equivalent to quadrics.
This is a consequence of a non-standard KAM-like theorem for pair of germs of holomorphic involutions $\{\tau_1,\tau_2\}$ at the origin, a common fixed point. We show that such a pair has large amount of invariant analytic sets biholomorphic to $\{z_1z_2=const\}$ (which is not a torus) in a neighborhood of the origin, and that they are conjugate to restrictions of linear maps on such invariant sets.

Дополнительные материалы: sildes_mw_hyperbolic_bolibruch.pdf (305.5 Kb)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024