Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






International seminar for young researchers "Algebraic, combinatorial and toric topology"
17 декабря 2020 г. 17:00–17:40, online
 


A $K$-theory criterion for $p$-hyperbolicity

G. Boyde

University of Southampton
Видеозаписи:
MP4 194.5 Mb

Количество просмотров:
Эта страница:133
Видеофайлы:14



Аннотация: For a (nice enough) finite $CW$-complex, consider the sequence of non-negative integers whose $k$-th term is the number of $\mathbb{Z}$-summands appearing in the direct sum of the first $k$ homotopy groups. A famous dichotomy in rational homotopy theory says that either this sequence is bounded (hence eventually constant) or it grows exponentially. For example, this means that no finite $CW$-complex whose rational homotopy grows polynomially exists. Huang and Wu (arXiv 2017) introduced the definitions of $p$- and $\mathbb{Z}/p^r$-hyperbolicity in order to study the growth of the number of torsion summands at a given prime $p$. I will give an overview, focussing on a condition on $K$-theory which implies $p$-hyperbolicity, and deduce some examples of $p$-hyperbolic suspensions. This condition is based on work of Selick on Moore's conjecture for torsion-free suspensions.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024