Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






International Workshop "Hilbert $C^*$-Modules Online Weekend" in memory of William L. Paschke (1946–2019)
6 декабря 2020 г. 10:35–11:05, г. Москва, МГУ им. М. В. Ломоносова
 


Strong Birkhoff–James orthogonality in Hilbert $C^*$-modules

L. Arambašić

University of Zagreb
Видеозаписи:
MP4 37.2 Mb

Количество просмотров:
Эта страница:147
Видеофайлы:52



Аннотация: We say that two elements of a Hilbert $C^*$-module are orthogonal if their $C^*$-valued inner product is $0$. In a Hilbert $C^*$-module, besides this type of orthogonality, we can study all other orthogonalities defined in a general normed space. One which is most frequently used is Birkhoff–James orthogonality - if $x, y$ are elements of a normed linear space $X,$ then $x$ is orthogonal to $y$ in the BJ sense if $\|x+\lambda y\|\ge \|x\|$ for all scalars $\lambda$. As we usually do in Hilbert $C^*$-modules, we study analogous relations obtained by replacing scalars with elements of the underlying $C^*$-algebra, or the norm with the $C^*$-valued "norm". It often happens that these relations are very strong and coincide with (the first mentioned) orthogonality in a Hilbert $C^*$-module, but not always. This leads to the notion of the strong (also called modular) BJ orthogonality which is the main topic of this talk. This is a joint work with R. Rajić.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024