Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Conference in honor of Guillermo Lуpez Lagomasino's 60th birthday «International Workshop on Orthogonal Polynomials and Approximation Theory» IWOPA'08
10 сентября 2008 г. 13:35, г. Мадрид
 


Complex Gaussian quadrature of oscillatory integrals with stationary points

A. Deaño

University of Cambridge
Видеозаписи:
Windows Media 73.1 Mb
Flash Video 126.3 Mb
MP4 142.3 Mb

Количество просмотров:
Эта страница:367
Видеофайлы:100

A. Deaño



Аннотация: We construct and analyze Gauss-type quadrature rules with complex valued nodes and weights to approximate oscillatory integrals with stationary points of high order. The method is based on substituting the original interval of integration by a set of contours in the complex plane, corresponding to the paths of steepest descent. Each of these line integrals shows an exponentially decaying behaviour, suitable for the application of Gaussian rules with non-standard weight functions. The results di er from those in previous research in the sense that the constructed rules are asymptotically optimal, i.e., among all known methods for oscillatory integrals they deliver the highest possible asymptotic order of convergence, relative to the required number of evaluations of the integrand. Numerical examples and illustrations of the location of the Gaussian nodes in the complex plane are included.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024