|
|
Семинар по многомерному комплексному анализу (Семинар Витушкина)
16 декабря 2020 г. 16:45, г. Москва, online
|
|
|
|
|
|
Asymptotic first boundary value problem for holomorphic functions of several complex variables
P. M. Gauthier Université de Montréal, Département de Mathématiques et de
Statistique
|
Количество просмотров: |
Эта страница: | 211 |
|
Аннотация:
Theorem (with Mohammad Shirazi, McGill University).
Let $M$ be a complex manifold endowed with a distance $d$ and a regular Borel measure $\mu$, such that non-empty open sets have positive measure. Let $U \subset M$ be an arbitrary Stein domain and $\psi\in \mathcal M(\partial U)$ an arbitrary Borel measurable function on the
boundary $\partial U$, whose restriction to some closed subset $S\subset\partial U$ is continuous. Then, for an arbitrary regular $\sigma$-finite Borel
measure $\nu$ on $\partial U$, there exists a holomorphic function $f$ on $U$, such that, for $\nu$-almost every $p\in\partial U$, and for every $p \in S$,
$f(x) \to \psi(p)$, as $x \to p$ outside a set of $\mu$-density 0 at $p$ relative to $U$.
Язык доклада: английский
Website:
https://mi-ras-ru.zoom.us/j/6119310351?pwd=anpleGlnYVFXNEJnemRYZk5kMWNiQT09
* ID: 611 931 0351. Password: 5MAVBP. |
|