Аннотация:
Рассматривается задача min_{x \in S} f(x), где f - функция с липшицевым градиентом, а S — гладкое (или не очень гладкое, например C1) многообразие. В докладе будут обсуждаться вопросы сходимости метода проекции градиента для решения указанной задачи при условии проксимальной гладкости множества S.
Проксимальная гладкость - не экзотика. Например, для основных матричных многообразий (Штифеля, Грассмана, матриц заданного ранга и т.д.) найдены точные константы проксимальной гладкости, которые и нужны в алгоритме.
Другое важное условие, гарантирующее линейную сходимость метода - условие Лежанского-Поляка-Лоясевича, или его эквивалентные клоны. В докладе будет обсуждаться класс задач, для которых указанное условие типично. Этот класс и соответствующее условие получено совместно с А. Тремба.
Также будет предъявлен алгоритм с шагом Армихо, в котором не требуется знание разных констант (или требуются не все константы). Этот результат получен совместно с магистром МФТИ Р. Камаловым.