Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар по геометрической топологии
27 ноября 2020 г. 17:00–20:00, г. Москва, Zoom
 


Инвариант Гасснера и многочлен Александера струнных зацеплений

М. С. Тёмкин
Дополнительные материалы:
Adobe PDF 7.0 Kb

Количество просмотров:
Эта страница:335
Материалы:64
Youtube:



Аннотация: Струнное зацепление – это обобщение чистой (в другой терминологии, крашеной) косы, в котором нити разрешается идти вверх (см. картинку). Инвариант Гасснера сопоставляет $n$-компонентному струнному зацеплению $L$ матрицу $\gamma(L)$ из группы $GL_n(Q(t_1, \dots, t_n))$, где $Q(t_1, \dots, t_n)$ – поле рациональных функций от $n$ переменных. Он был построен на прошлых докладах Д. Зайцевым. По модулю некоторых лемм, мы докажем формулу
$$\Delta_{\hat L} = \Delta_L \gamma_R,$$
где $\Delta_{\hat L}$ – многочлен Александера замыкания $L$ (определяемого аналогично замыканию косы), $\Delta_L$ – многочлен Александера $L$ (определяемый аналогично многочлену Александера замкнутого зацепления в $S^3$) и $\gamma_R$ – некоторая функция от матрицы $\gamma(L)$ со значениями в $Q(t_1, \dots, t_n)$. Доказательство опирается, в некоторой мере, на теорию кручений комплексов над полем.
Все необходимые определения будут даны, определение инварианта Гасснера будет напомнено. Доклад основан на главе 6 статьи “The Gassner representation for string links” Кирка, Ливингстона и Вана (arXiv:math/9806035). Скриншоты написанного планируется выкладывать в Dropbox.

Подключение к Zoom'у: https://mi-ras-ru.zoom.us/j/98442461141
Код доступа: эйлерова характеристика букета двух окружностей

Дополнительные материалы: string_link.pdf (7.0 Kb)
Цикл докладов
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024