Processing math: 100%
Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар по арифметической геометрии
26 октября 2020 г. 16:00–18:00, г. Москва, МИАН, комн. 303 (ул. Губкина, 8)
 


Когомологии Хохшильда алгебры дифференциальных операторов над Z/pn

Терентюк Глеб

Факультет математики, Национальный исследовательский университет «Высшая школа экономики», г. Москва

Количество просмотров:
Эта страница:223

Аннотация: Пусть X1 — гладкое аффинное многообразие над совершенным полем положительной характеристики, и Xn — подъём по модулю pn. Оказывается, что центр Zn алгебры Dn дифференциальных операторов на Xn отождествляется с Wn(Z1), где Z1 — центр алгебры дифференциальных операторов по модулю p. На самом деле, верен более общий факт: HHk(Dn) отождествляется с k-ым членом n-обрезанного комплекса де Рама–Витта кокасательного расслоения X1. Сформулированное ранее утверждение соответствует этому изоморфизму для k=0. Я расскажу об этом сюжете и, следуя работе А. Тикарадзе, расскажу о том, как такое доказать.
Доклад будет проходить вживую, но все желающие могут также участвовать через Zoom:
Ссылка на конференцию в ZOOM
Идентификатор Zoom конференции: 980 9377 5345
Код доступа: 284750
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025