Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Complex Approximations, Orthogonal Polynomials and Applications (CAOPA)
7 сентября 2020 г. 15:00, г. Москва, онлайн на платформе Zoom
 


Asymptotics of greedy energy sequences on the unit circle and the sphere

A. López-García

University of Central Florida, Orlando, FL

Аннотация: A greedy energy sequence on a compact set is a sequence generated by a recursive algorithm in which points are selected one at a time, so that a certain energy functional is minimized (or maximized). A well-known example is the Edrei-Leja sequence on a compact subset of the plane for the logarithmic energy. In this talk I will discuss asymptotic properties of such sequences on the unit sphere, obtained using the Riesz interaction potential r^s, s>0, where r is distance between particles. First and second-order asymptotics of the energy of the first n points of the sequence is discussed (the latter on the unit circle), as well as its distribution. Joint work with R.E. McCleary.)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024