Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Beijing–Moscow Mathematics Colloquium
25 сентября 2020 г. 11:00–12:00, г. Москва, online
 


Geometric description of the Hochschild cohomology of Group Algebras

A. S. Mishchenko

Lomonosov Moscow State University
Видеозаписи:
MP4 169.8 Mb

Количество просмотров:
Эта страница:343
Видеофайлы:53



Аннотация: There are two approaches to the study of the cohomology of group algebras $\mathbb{R}[G]$: the Eilenberg-MacLane cohomology and the Hochschild cohomology. In the case of Eilenberg-MacLane cohomology one has the classical cohomology of the classifying space $BG$. Hochschild cohomology represents a more general construction, in which so-called two-sided bimodules are considered.
The Hochschild cohomology and the usual Eilenberg-MacLane cohomology are coordinated by moving from bimodules to left modules.
For the Eilenberg-MacLane cohomology, in the case of a nontrivial action of the group $G$ in the module $M_l$ , no reasonable geometric interpretation has been known so far. An effective geometric description of the Hochschild cohomology is devoted to the main result of this paper. The key point for the new geometric description of the Hochschild cohomology is the new groupoid $Gr$ associated with the adjoint action of the group $G$.
The cohomology of the classifying space $BGr$ of this groupoid with an appropriate condition for the finiteness of the support of cochains is isomorphic to the Hochschild cohomology of the algebra $\mathbb{R}[G]$. Hochschild homology is described in the form of homology groups of the space $BGr$, but without any conditions of finiteness on chains.
There is a connection between the homology of the space $BGr$ and the cohomology of $BGr$ in the form of an isomorphism $H^*_f(BGr, \mathbb{R}) \approx \mathsf{Hom}_f (H_*(BGr), \mathbb{R})$ where $\mathsf{Hom}_f$ is a set of linear homomorphisms with a condition of finiteness.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024