Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Общероссийский семинар по оптимизации им. Б.Т. Поляка
30 сентября 2020 г. 17:30, Москва, Онлайн, пятница, 19:00
 


Finite Time Analysis of Linear Two-timescale Stochastic Approximation

А. А. Наумов
Дополнительные материалы:
Adobe PDF 1.8 Mb

Количество просмотров:
Эта страница:313
Материалы:49
Youtube:



Аннотация: Linear two-timescale stochastic approximation (SA) scheme is an important class of algorithms which has become popular in reinforcement learning (RL), particularly for the policy evaluation problem. Recently, a number of works have been devoted to establishing the finite time analysis of the scheme, especially under the Markovian (non-i.i.d.) noise settings that are ubiquitous in practice. In this talk, we provide a finite-time analysis for linear two timescale SA. Our bounds show that there is no discrepancy in the convergence rate between Markovian and martingale noise, only the constants are affected by the mixing time of the Markov chain. With an appropriate step size schedule, the transient term in the expected error bound is $o(1/k^c)$ and the steady-state term is ${\cal O}(1/k)$, where $c>1$ and $k$ is the iteration number. Furthermore, we present an asymptotic expansion of the expected error with a matching lower bound of $\Omega(1/k)$. A simple numerical experiment is presented to support our theory. The talk is based on the recent paper Finite Time Analysis of Linear Two-timescale Stochastic Approximation with Markovian Noise by Maxim Kaledin, Eric Moulines, Alexey Naumov, Vladislav Tadic, Hoi-To Wai ; Proceedings of Thirty Third Conference on Learning Theory, PMLR 125:2144-2203, 2020.

Дополнительные материалы: twotimescalepresentation__for_optimization_seminar_.pdf (1.8 Mb)
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024