Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Geometric Measure Theory and Geometric Analysis in Moscow
14 сентября 2020 г. 16:00–17:00, г. Москва, онлайн
 


Honeycombs and Densities, including Multiple Bubbles in Gauss Space

F. Morgan
Видеозаписи:
MP4 142.6 Mb
Презентации:
PowerPoint 215.4 Mb

Количество просмотров:
Эта страница:283
Видеофайлы:70
Материалы:23



Аннотация: The $n$-bubble problem seeks the least-perimeter way to enclose and separate $n$ prescribed volumes in $\mathbb{R}^m$. The solution is known only for $n = 1$ or 2 in $\mathbb{R}^m$ (round sphere and standard double bubble) and $n = 3$ in $\mathbb{R}^2$ (standard triple bubble). If you give $\mathbb{R}^m$ Gaussian density, the solution was recently proved by Milman and Neeman for $n \le m$. There is further news for other densities.
In 2000 Hales proved that regular hexagons provide a least-perimeter way to partition the plane into unit areas. Undergraduates recently obtained a partial extension to closed hyperbolic manifolds. The 3D Euclidean case remains open. The best tetrahedral tile was proved recently. (Despite what Aristotle said, the regular tetrahedron does not tile.)
We'll describe many such results and open questions.

Презентации: presentation.pptx (215.4 Mb)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024