Аннотация:
С древнейших времен люди хотели понять, как устроены решения систем полиномиальных уравнений в целых числах. Много позже было открыто, что для этого удобно смотреть на некоторые векторные пространства с действием на них линейных операторов. Частный случай таких пространств — модуль Тейта, построенный по точкам конечного порядка на эллиптической кривой. Свойства этих векторных пространств с операторами связаны с рядом ключевых вопросов современной арифметической геометрии: гипотезы о весах Фробениуса, модулярность, гипотезы типа Сато-Тейта, соответствие Ленглендса. В последнее время во всех этих направлениях был получен впечатляющий прогресс, благодаря созданной Петером Шольце теории перфектоидов и ее дальнейшему развитию.
Мы попытаемся рассказать об этом “на пальцах”.