Аннотация:
Многие слушатели наверняка видели картинки множества Мандельброта — и его формальное определение: множество таких $c$, что последовательность, определённая по правилу $z_0=0, z_{n+1}=z^2_n+c$, не убегает на бесконечность. А с чем такое определение связано?
Для каждого значения c можно рассмотреть те начальные условия $z_0$, для которых такие итерации не убегают на бесконечность. Они образуют другой фрактал, заполненное множество Жюлиа; оказывается, что $c$ принадлежит множеству Мандельброта тогда и только тогда, когда этот фрактал связен — а не “распадается в пыль”.
Мы посмотрим на то, что можно сказать о множествах Жюлиа, и как они изменяются при изменении параметра — и на те дороги, которые с этих наблюдений начинаются.