|
|
Совместный общематематический семинар СПбГУ и Пекинского Университета
16 июня 2020 г. 15:00, г. Санкт-Петербург, online
|
|
|
|
|
|
Multiple structures for quasilinear equations by the variational method
A. I. Nazarovab a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Saint Petersburg State University
|
Видеозаписи: |
|
MP4 |
379.1 Mb |
Количество просмотров: |
Эта страница: | 277 | Видеофайлы: | 19 |
|
Аннотация:
We study entire bounded solutions to the equations of variational nature.
The model example here is $\Delta u - u + u^3 = 0$ in $\mathbb R^2$. Our
approach is purely variational and is based on concentration arguments and
symmetry considerations. This method allows us to construct in an unified
way several types of solutions with various symmetries (radial, breather
type, rectangular, triangular, hexagonal, etc.),both positive and
sign-changing. It is also applicable for more general equations in any
dimension. The talk is based on the joint paper Lerman L.M., Naryshkin P.E.,
Nazarov A.I., Abundance of entire solutions to nonlinear elliptic equations
by the variational method, Nonlinear Analysis – TMA. 190 (2020), DOI
10.1016/j.na.2019.111590, 1-21.
Website:
https://chebyshev.spbu.ru/schedule/?week=1592168400
|
|