Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Большой семинар лаборатории комбинаторных и геометрических структур
4 июня 2020 г. 19:00, Москва, Онлайн! https://zoom.us/j/279059822 пароль: первые шесть цифр числа \pi после запятой
 


Exact stability for Turán's theorem

D. Korandi

Количество просмотров:
Эта страница:155
Youtube:



Аннотация: Turán's theorem says that an extremal K_{r+1}-free graph is r-partite. The Stability Theorem of Erdős and Simonovits shows that if a K_{r+1}-free graph with n vertices has close to the maximal t_r(n) edges, then it is close to being r-partite. In this talk we determine exactly the K_{r+1}-free graphs with at least m edges that are farthest from being r-partite, for any m > t_r(n) - δn^2. This extends work by Erdős, Győri and Simonovits, and proves a conjecture of Balogh, Clemen, Lavrov, Lidický and Pfender. Joint work with Alexander Roberts and Alex Scott.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024