Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Дни комбинаторики и геометрии II
14 апреля 2020 г. 17:50–18:15, Онлайн-конференция
 


The $\varepsilon$-$t$-Net Problem

Y. Yuditsky
Дополнительные материалы:
Adobe PDF 559.3 Kb

Количество просмотров:
Эта страница:123
Материалы:17
Youtube:



Аннотация: We study a natural generalization of the classical $\varepsilon$-net problem (Haussler–Welzl 1987), which we call the $\varepsilon$-$t$-net problem: Given a hypergraph on $n$ vertices and parameters $t$ and $\varepsilon\ge \frac{t}{n}$, find a minimum-sized family $S$ of $t$-element subsets of vertices such that each hyperedge of size at least $\varepsilon n$ contains a set in $S$. When $t=1$, this corresponds to the $\varepsilon$-net problem.

We prove that any sufficiently large hypergraph with VC-dimension $d$ admits an $\varepsilon$-$t$-net of size $O(\frac{(1+\log t)d}{\varepsilon} \log \frac{1}{\varepsilon})$. For some families of geometrically-defined hypergraphs (such as the dual hypergraph of regions with linear union complexity), we prove the existence of $O(\frac{1}{\varepsilon})$-sized $\varepsilon$-$t$-nets.

We also present an explicit construction of $\varepsilon$-$t$-nets (including $\varepsilon$-nets) for hypergraphs with bounded VC-dimension. In comparison to previous constructions for the special case of $\varepsilon$-nets (i.e., for $t=1$), it does not rely on advanced derandomization techniques. To this end we introduce a variant of the notion of VC-dimension which is of independent interest.

Joint work with Noga Alon, Bruno Jartoux, Chaya Keller and Shakhar Smorodinsky.

Дополнительные материалы: yelena_yuditsy_pres_etnet_cgd2.pdf (559.3 Kb)
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024