Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Когомологические аспекты геометрии дифференциальных уравнений
18 мая 2020 г. 15:00, г. Москва, онлайн
 


Using the KdV conserved quantities in problems of splitting of initial data and reflection / refraction of solitons in varying dissipation and/or dispersion media

А. В. Самохин
Видеозаписи:
MP4 139.8 Mb
Дополнительные материалы:
Adobe PDF 1.5 Mb

Количество просмотров:
Эта страница:275
Видеофайлы:33
Материалы:30

A. V. Samokhin



Аннотация: An arbitrary compact-support initial datum for the Korteweg-de Vries equation asymptotically splits into solitons and a radiation tail, moving in opposite direction. We give a simple method to predict the number and amplitudes of resulting solitons and some integral characteristics of the tail using only conservation laws.
A similar technique allows to predict details of the behavior of a soliton which, while moving in non-dissipative and dispersion-constant medium encounters a finite-width barrier with varying dissipation and/or dispersion; beyond the layer dispersion is constant (but not necessarily of the same value) and dissipation is null. The process is described with a special type generalized KdV-Burgers equation $u_t=(u^2+f(x)u_{xx})_x$.
The transmitted wave either retains the form of a soliton (though of different parameters) or scatters a into a number of them. And a reflection wave may be negligible or absent. This models a situation similar to a light passing from a humid air to a dry one through the vapor saturation/condensation area. Some rough estimations for a prediction of an output are given using the relative decay of the KdV conserved quantities; in particular a formula for a number of solitons in the transmitted signal is given.

Дополнительные материалы: zoom_lab_6_samokhin.pdf (1.5 Mb)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024