Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Онлайн конференция "Рубежи голографического соответствия"
6 мая 2020 г. 16:00–17:00, г. Москва, online
 


Geometric secret sharing in a model of Hawking radiation

Vijay Balasubramanian

University of Pennsylvania
Видеозаписи:
MP4 609.7 Mb
MP4 1,086.3 Mb

Количество просмотров:
Эта страница:209
Видеофайлы:21
Youtube:

Vijay Balasubramanian



Аннотация: We consider a black hole in three dimensional AdS space entangled with an auxiliary radiation system. We then model the microstates of the black hole in terms of a field theory living on an end of the world brane behind the horizon, and allow this field theory to itself have a holographic dual geometry. This geometry is also a black hole since entanglement of the microstates
with the radiation leaves them in a mixed state. This “inception black hole” can be purified by entanglement through a wormhole with an auxiliary system which is naturally identified with the external radiation, giving a realization of the ER=EPR scenario. In this context, we
propose an extension of the Ryu-Takayanagi (RT) formula, in which extremal surfaces computing entanglement entropy are allowed to pass through the brane into its dual geometry. This
new rule reproduces the Page curve for evaporating black holes, consistently with the recently proposed “island formula”. We then separate the radiation system into pieces. Our extended RT rule shows that the entanglement wedge of the union of radiation subsystems covers the black hole interior at late times, but the union of entanglement wedges of the subsystems may not. This result points to a secret sharing scheme in Hawking radiation wherein reconstruction of certain regions in the interior is impossible with any subsystem of the radiation, but possible with all of it.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024