Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар по геометрической топологии
5 февраля 2020 г. 17:00–20:00, г. Москва, Матфак ВШЭ (ул. Усачёва, 6), ауд. 210
 


Конические разрешения и когомологии пространств неособых гиперповерхностей степени $d$ в $\mathbb{C}P^n$

М. Долгих

Количество просмотров:
Эта страница:394
Youtube:



Аннотация: В докладе будет изложен предложенный В. А. Васильевым и модифицированный А. Г. Гориновым метод конических разрешений, который позволяет вычислять группы когомологий пространств уравнений "неособых" гиперповерхностей фиксированной степени в комплексном проективном пространстве. В данном случае "неособые" может иметь раличные значения, и, в частности, в качестве иллюстрации будут вычислены рациональные когомологии пространства уравнений нодальных кубических кривых в $\mathbb CP^2$. Для понимания доклада предварительных знаний алгебраической геометрии не потребуется.
Это простейший нетривиальный пример "неособых" гиперповерхностей (для "неособых" кривых в привычном смысле вычисление было бы тривиальным, но и его можно описать). Метод общий и применим к любым "неособым" (в докладе будет уточнено, что именно можно считать "особенностями" кривой) гиперповерхностям степени $d$ в $\mathbb CP^n$, а иллюстрация будет получаться простой подстановкой $d=3$, $n=2$, и некоторыми нетривиальными вычислениями вспомогательных (ко)гомологий, которые уже специфичны для данного конкретного случая (и которые я, возможно, предложу в качестве фактов / упражнений энтузиастам).
Цикл докладов
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024