Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






SIMC Open
25 декабря 2019 г. 12:20–13:20, г. Москва, МИАН, ул. Губкина, д. 8, конференц зал
 


Мотивный аналог машины Сигала

И. А. Панин

Санкт-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук
Видеозаписи:
MP4 1,006.9 Mb
MP4 1,938.9 Mb

Количество просмотров:
Эта страница:494
Видеофайлы:162
Youtube:

И. А. Панин
Фотогалерея



Аннотация: Доклад посвящен совместной работе с Г. Гаркушей (Swansea University) и является частью реализованного нами проекта В. Воеводского, изложенного им в “Notes on framed correspondences”.
Для каждого гладкого комплексного алгебраического многообразия $X$ Воеводский построил пунктированное связное симплициальное множество $Fr(\Delta^\bullet_{alg},X\otimes S^1)$. В рамках данного проекта мы, в частности, доказываем две следующие теоремы:
Теорема 1. Геометрическая реализация симплициального множества $Fr(\Delta^\bullet_{alg},S^1)$ имеет гомотопический тип пространства $\Omega^{\infty} \Sigma^{\infty} (S^1)$.
Теорема 2. Для каждых целых $m>0$ и $r\geq 0$ имеется равенство
$$ \pi_r(Fr(\Delta^\bullet_{alg},X\otimes S^1); \mathbb Z/m) = \pi^{stable}_r(X_+ \wedge S^1; \mathbb Z/m).$$
Эти две теоремы распространяют результаты статьи в Inventiones mathematicae В. Воеводского и А. Суслина в контекст мотивной стабильной гомотопической категории. Доказательство этих двух теорем опирается на наше далекое обобщение результатов статьи В. Воеводского о гомотопически инвариантных предпучках с трансферами, на теорему сокращения и теорему о конусе. Подчеркнем, что последняя теорема не имеет никакого аналога в теории мотивов Воеводского.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024