Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






SIMC Open
23 декабря 2019 г. 11:10–12:10, г. Москва, МИАН, ул. Губкина, д. 8, конференц зал
 


Первые интегралы и асимптотические траектории

В. В. Козловab

a Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
b Московский государственный университет имени М. В. Ломоносова
Видеозаписи:
MP4 990.5 Mb
MP4 1,907.4 Mb

Количество просмотров:
Эта страница:608
Видеофайлы:166
Youtube:

В. В. Козлов
Фотогалерея



Аннотация: Обсуждаются связи между особыми точками автономных систем дифференциальных уравнений и критическими точками их первых интегралов. С помощью известной леммы о расщеплении вводятся локальные координаты, в которых первый интеграл имеет “канонический” вид. Эти координаты позволяют ввести в окрестности особой точки квазиоднородную структуру и доказать общие теоремы о наличии асимптотических траекторий, входящих в особую точку или выходящих из нее. Исследованы квазиоднородные укорочения исходной системы дифференциальных уравнений. Показано, что при условии изолированности особой точки квазиоднородная система будет гамильтоновой. Установлена теорема о неустойчивости равновесий общих механических систем с двумя степенями свободы, когда потенциальная энергия в положении равновесия не имеет ни максимума, ни минимума.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024