Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Задачи дифференциальных уравнений, анализа и управления: теория и приложения
25 ноября 2019 г. 18:30–20:00, г. Москва, МГУ им. М.В. Ломоносова, механико-математический факультет, ауд. 13-06
 


Об аэродинамической задаче Ньютона без предположения об осевой симметрии

М. И. Зеликинab, Л. В. Локуциевскийba

a Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
b Математический институт им. В.А. Стеклова Российской академии наук, г. Москва

Количество просмотров:
Эта страница:205

Аннотация: Задача о форме выпуклого тела, имеющего минимальное сопротивление при движении в разреженной среде, была поставлена и решена Ньютоном для выпуклых тел вращения. На протяжении трех веков считалось, что найденное Ньютоном решение оптимально в классе всех выпуклых тел. Однако в конце ХХ в. выяснилось, что это не так: были найдены неосесимметричные выпуклые тела с меньшим сопротивлением. Точная форма оптимального тела неизвестна вплоть до настоящего момента. На докладе будет представлена работа, в которой аналитически выведена форма тела в классе минимальных тел, обладающих вертикальной плоскостью симметрии, и доказана его локальная оптимальность. Полученное сопротивление хорошо согласуется с численными расчетами, проведенными ранее Lachand-Robertand, Oudet и Wachsmuth.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024