Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Научная сессия МИАН, посвященная подведению итогов 2019 года
20 ноября 2019 г. 12:00–12:15, г. Москва, МИАН, ул. Губкина, 8, конференц-зал
 


Задача Погорелова об изометрических преобразованиях цилиндрической поверхности

М. И. Штогрин
Видеозаписи:
MP4 643.7 Mb
MP4 334.2 Mb

Количество просмотров:
Эта страница:323
Видеофайлы:48
Youtube:

М. И. Штогрин
Фотогалерея



Аннотация: В конце 1960-х годов А. В. Погорелов рассмотрел задачу о кусочно гладких изометрических вложениях поверхности прямого кругового цилиндра в трехмерное евклидово пространство с условием опоры на края: предполагается, что компоненты границы цилиндра вкладываются стандартным образом – в виде окружностей в параллельных плоскостях, расположенных одна над другой. Эта задача мотивирована прикладной проблемой теории оболочек о деформации тонкостенной цилиндрической трубы, подвергаемой сильному (закритическому) сжатию вдоль оси. А. В. Погорелов в книге “Геометрические методы в нелинейной теории упругих оболочек” 1967 года утверждает, что решил задачу о существовании нетривиального изометрического вложения цилиндрической поверхности при данных условиях, и представил несколько возможных вариантов таких вложений. Этот результат был использован А. В. Погореловым при анализе механических свойств закритического упругого состояния цилиндрической оболочки.

В работе [1] , используя результаты работ [2], [3], М. И. Штогрин показал, что в книге 1967 года, глава 8, параграф 4, рассуждения А. В. Погорелова содержат пробелы. В [1] детально доказано, что вложенные поверхности, предъявленные А. В. Погореловым, не изометричны цилиндру. Развивая эти исследования, М. И. Штогрин построил нетривиальные изометрические вложения цилиндра, удовлетворяющие условиям Погорелова, в классе кусочно-гладких поверхностей с неограниченным множеством гладких кусков; первый пример такого вложения можно получить, если поверхность, изображенную на рис. 15, c, в [3], разрезать по окружности (параллельной основаниям) на две равные части, а потом составить их них новую поверхность с окружностями по краям. Однако, существование нетривиального изометрического вложения цилиндра с конечным числом гладких кусков пока не установлено и в этом случае обсуждаемая задача Погорелова остается открытой проблемой.

Список литературы
  1. М. И. Штогрин, “Задача Погорелова об изометрических преобразованиях цилиндрической поверхности”, УМН, 74:6(450) (2019), 169–170  mathnet  crossref [M. I. Shtogrin, “Pogogrelov's problem on isometric transformations of a cylindrical surface”, Uspekhi Mat. Nauk, 74:6(450) (2019), 169–170  mathnet  crossref]
  2. М. И. Штогрин, “Об одной задаче Погорелова”, УМН, 73:1(439) (2018), 185–186  mathnet  crossref  mathscinet  adsnasa  elib; Russian Math. Surveys, 73:1 (2018), 178–180  crossref  isi  scopus
  3. М. И. Штогрин, “Изометрические погружения конуса и цилиндра”, Изв. РАН. Сер. матем., 73:1 (2009), 187–224  mathnet  crossref  mathscinet  zmath  adsnasa  elib; Izv. Math., 73:1 (2009), 181–213  crossref  isi  elib  scopus


Статьи по теме:
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024