Loading [MathJax]/jax/output/SVG/config.js
Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Когомологические аспекты геометрии дифференциальных уравнений
6 ноября 2019 г. 19:20, г. Москва, Независимый Московский университет, Большой Власьевский пер., 11, ауд. 308
 


Бигамильтоновые системы гидродинамического типа

М. В. Павлов

Количество просмотров:
Эта страница:201

Аннотация: Мы рассматриваем бигамильтоновые системы гидродинамического типа с точки зрения классической дифференциальной геометрии, и обсуждаем открытые задачи.
В инвариантах Римана, эта задача сводится к интегрируемым системам, коэффициенты линейных пар Лакса которых явно зависят от независимых переменных. То есть, такие задачи принадлежат к более сложному классу интегрируемых систем, чем такие известные системы уравнений как уравнение Кортевега-де Фриза, нелинейное уравнение Шрёдингера и другие...
В плоских координатах, эта задача сводится к набору коммутирующих систем гидродинамического типа, которые интегрируемы методом обратной задачи. С одной стороны, коэффициенты соответствующих линейных пар Лакса не зависят явно от независимых переменных (в этих плоских координатах). С другой стороны, полученные системы гидродинамического типа являются системами, которые совершенно не изучены, и здесь открываются значительные перспективы как и в их изучении, так и в их интегрировании.
 
  Обратная связь:
math-net2025_01@mi-ras.ru
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025