Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция «VIII Российско-Армянское Совещание по математической физике, комплексному анализу и смежным вопросам»
20 сентября 2019 г. 15:50–16:30, Секция «Комплексный анализ», г. Москва, МИАН, 9-й этаж
 


Аппроксимация в весовых $L^2$-пространствах и гипотеза Римана

В. В. Капустин

Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН
Видеозаписи:
MP4 1,193.4 Mb
MP4 1,246.7 Mb

Количество просмотров:
Эта страница:186
Видеофайлы:43



Аннотация: В докладе рассматриваются различные унитарно эквивалентные модели, связанные с подходом Берлинга–Нимана к гипотезе Римана о нулях дзета-функции Римана.
Пусть $\mathcal K$ — подпространство весового пространства
$$ L^2_{1/x^2}(0, +\infty)=\bigg\{f: \ \int\limits_0^{+\infty}|f(x)|^2\,\frac{dx}{x^2}<\infty\bigg\}, $$
состоящее из всех функций, являющихся 1-периодическими (то есть $f(x+1)=f(x)$) и удовлетворяющих соотношению $f(x)+f(1-x)\equiv{\rm const}$, $x\in(0, 1)$. Пусть $\mathcal K_\ast$ — замкнутая линейная оболочка в пространстве $L^2_{1/x^2}(0, +\infty)$ функций $\rho(nx)$, $n=1, 2, \dots$, где $\rho(\,\cdot \,)$ обозначает дробную часть вещественного числа; имеем $\mathcal K_\ast\subset\mathcal K$.
Теорема. Гипотеза Римана о нулях дзета-функции Римана равносильна соотношению $\mathcal K_\ast=\mathcal K$.
В свете теоремы следующее простое предложение объясняет интерес к изучению подпространства $\mathcal K_\ast$.
Предложение. Пусть $s$ — комплексное число, для которого ${\rm Re}\, s\in(\frac{1}{2}, 1)$, и пусть $f\in\mathcal K_\ast$. Если $\zeta(s)=0$, то
$$\int\limits_0^{+\infty}x^{s-2}f(x)\,dx=0. $$


Список литературы
  1. В.В.Капустин, “Теорема Берлинга, формула Дэвенпорта и гипотеза Римана”, Алгебра и анализ, 30:6 (2018), 20–42
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024