Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






27th International Conference on Finite and Infinite Dimensional Complex Analysis and Applications
16 августа 2019 г. 14:00–14:30, Секция III, г. Красноярск, Сибирский федеральный университет
 


$p$-Laplacian boundary value problem with jumping nonlinearities

T. Jung

Kunsan National University, Kunsan
Видеозаписи:
MP4 715.2 Mb
MP4 730.1 Mb

Количество просмотров:
Эта страница:102
Видеофайлы:5



Аннотация: We investigate multiplicity of solutions for one dimensional $p$-Laplacian Dirichlet boundary value problem with jumping nonlinearites. We obtain three theorems: The first one is that there exists exactly one solution when nonlinearities cross no eigenvalue. The second one is that there exist exactly two solutions, exactly one solutions and no solution depending on the source term when nonlinearities cross one first eigenvalue. The third one is that there exist at least three solutions, exactly one solutions and no solution depending on the source term when nonlinearities cross the first and second eigenvalues. We obtain the first theorem and the second one by eigenvalues and the corresponding normalized eigenfunctions of the $p$-Laplacian Dirichlet eigenvalue problem, and the contraction mapping principle on $p$-Lebesgue space (when $p \geqslant 2$). We obtain the third result by Leray-Schauder degree theory.
This is a joint work with Q-Heung Choi (Inha University, Incheon, South Korea).

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024