Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






27th International Conference on Finite and Infinite Dimensional Complex Analysis and Applications
16 августа 2019 г. 16:30–17:30, Пленарные доклады, г. Красноярск, Сибирский федеральный университет
 


Adiabatic limit in Yang-Mills equation on $\mathbb R^4$

A. G. Sergeev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Видеозаписи:
MP4 1,277.8 Mb
MP4 1,278.0 Mb



Аннотация: Harmonic spheres conjecture establishes a correspondence between Yang–Mills $G$-fields on $\mathbb R^4$ and harmonic maps of the Riemann sphere $S^2$ into the loop space $\Omega G$ of the group $G$. It is an extension to general Yang–Mills $G$-fields of the Atiyah–Donaldson theorem establishing a correspondence between the moduli space of $G$-instantons on $\mathbb R^4$ and holomorphic maps $S^2\to\Omega G$.
In our talk we present an approach to the proof of this conjecture based on the adiabatic limit construction proposed by Popov. His construction uses a nice parametrization of the sphere $S^4\setminus S^1$ with one deleted circle found by Jarvis and Norbury. With the help of this construction one can associate in a natural way with arbitrary Yang–Mills $G$-field on $S^4$ a harmonic map of the sphere $S^2$ to the loop space $\Omega G$.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024