Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






27th International Conference on Finite and Infinite Dimensional Complex Analysis and Applications
15 августа 2019 г. 15:00–16:00, Секция I, г. Красноярск, Сибирский федеральный университет
 


On Chui's conjecture and approximation by simplest fractions

K. Yu. Fedorovskiyab

a Bauman Moscow State Technical University
b St. Petersburg State University, Mathematics and Mechanics Faculty
Видеозаписи:
MP4 1,493.1 Mb
MP4 1,493.1 Mb

Количество просмотров:
Эта страница:197
Видеофайлы:50



Аннотация: In 1971 C. K. Chui conjectured that the average field strength in the unit disk $\mathbb D=\{|z|<1\}$ in the complex plane due to unit point masses on the unit circle $\mathbb T=\{|z|=1\}$ is minimal for the uniform distribution of masses. Formally the Chui's conjecture says that for all $\{z_1,\ldots,z_N\}\subset\mathbb T$, $N=1,2,\ldots$, the following is satisfied
$$ \bigg\|\sum_{k=1}^{N}\frac1{z-z_k}\bigg\|_{L^1(\mathbb D)}\geqslant \bigg\|\sum_{k=1}^{N}\frac1{z-\omega_N^k}\bigg\|_{L^1(\mathbb D)}, $$
where $\omega_N$ is the principal root of unity of degree $N$, so that $\omega_N=\exp(2\pi i/N)$, and the space $L^1(\mathbb D)$ is considered with respect to the planar Lebesgue measure in $\mathbb D$.
This conjecture remains open, and in the talk we will consider its analogue for the weighted Bergman spaces $A^2_\alpha=A^2_\alpha(\mathbb D)$, $\alpha>0$. Recall, that the space $A^2_\alpha$ consists of all holomorphic function $f$ in $\mathbb D$ such that
$$ \|f\|_{2,\alpha}^2:=\frac{\alpha+1}{\pi}\int|f(z)|^2(1-|z|^2)^\alpha\,dxdy<\infty. $$

It will be shown that the statement analogous to Chui's conjecture is true for the spaces $A^2_\alpha$ for all $\alpha\in(0,1]$. In other words, for all such $\alpha$ and for all $z_1,\ldots,z_N\in\mathbb T$, $N=1,2,\ldots$, one has
$$ \bigg\|\sum_{k=1}^{N}\frac1{z-z_k}\bigg\|_{2,\alpha}\geqslant \bigg\|\sum_{k=1}^{N}\frac1{z-\omega_N^k}\bigg\|_{2,\alpha}. $$

It is planned to consider also the problem about completeness in the space $A^2_\alpha$, $\alpha>0$, of the system of ‘simplest fractions’, that is functions of the form
$$ \sum_{k=1}^{N}\frac1{z-z_k}, $$
where $z_1,\ldots,z_N\in\mathbb T$, $N=1,2,\ldots$.
This is a joint work with E. Abakumov \textup(University Paris Est, Marne-la-Vallée, France\textup) and A. Borichev \textup(Aix–Marseille University, France\textup).

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024