Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






27th International Conference on Finite and Infinite Dimensional Complex Analysis and Applications
13 августа 2019 г. 16:30–17:00, Секция II, г. Красноярск, Сибирский федеральный университет
 


The Hartogs phenomenon in toric varietries

A. V. Shchuplev

Institute of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk
Видеозаписи:
MP4 906.4 Mb
MP4 906.3 Mb

Количество просмотров:
Эта страница:213
Видеофайлы:27



Аннотация: We say that a complex space $(X,\,\mathcal O)$ admits the Hartogs phenomenon if for any compact subset $K$ of $X$ such that $X\setminus K$ is connected, a restriction homomorphism
$$ H^0(X,\,\mathcal O) \rightarrow H^0(X\setminus K,\,\mathcal O) $$
is an isomorphism.
In toric varieties this phenomenon has been explored by M. Marciniak [1] who related it to properties of corresponding fans:
Theorem. If $X_\Sigma$ is a smooth toric surface with a strictly convex fan $\Sigma$ then $X_\Sigma$ admits the Hartogs phenomenon.
She has also formulated a conjecture for toric varieties of higher dimensions: A smooth toric variety $X_\Sigma$ admits the Hartogs phenomenon if the complement of its fan $\Sigma$ has at least one concave connected component.
We were able to prove it not only for smooth but also for normal toric varieties. Let $X_\Sigma$ be a normal toric variety corresponding to a fan $\Sigma\subset \mathbb R^d=\mathbb Z^d\otimes_{\mathbb Z}\mathbb R$. We shall say that a connected component of $\mathbb R^d\setminus |\Sigma|$ is concave if its convex hull coincides with $\mathbb R^d$.
Theorem. Let $X_\Sigma$ be a normal toric variety. If the complement of its fan $\Sigma$ has at least one concave connected component then $X_\Sigma$ admits the Hartogs phenomenon.
The proof follows from the study of Dolbeault cohomology with compact support of a smooth toric variety where $X_\Sigma$ can be equivariantly embedded.
This is a joint work with S. Feklistov.

Язык доклада: английский

Список литературы
  1. Malgorzata Aneta Marciniak, Holomorphic extensions in toric varieties, http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3365035, ProQuest LLC, Ann Arbor, MI, 2009 , 147 pp.  mathscinet
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024