Loading [MathJax]/jax/output/SVG/config.js
Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар Добрушинской лаборатории Высшей школы современной математики МФТИ
27 августа 2019 г. 16:00, комн. 307 ИППИ РАН (Большой Каретный пер., 19), Москва
 


On statistics of bi-orthogonal eigenvectors in non-selfadjoint Gaussian random matrices

, Yan Fyodorov

King's College London

Количество просмотров:
Эта страница:145

Аннотация: I will discuss a method of studying the joint probability density (JPD) of an eigenvalue and the associated 'non-orthogonality overlap factor' (also known as the 'eigenvalue condition number') of the left and right eigenvectors for non-selfadjoint Gaussian random matrices of size N x N. I will first derive the general finite N expression for the JPD of a real eigenvalue and the associated non-orthogonality factor in the real Ginibre ensemble, and then analyze its 'bulk' and 'edge' scaling limits. I will also discuss ongoing work on real elliptic ensembles. The ensuing distribution is maximally heavy-tailed, so that all integer moments beyond normalization are divergent. A similar calculation for the associated non-orthogonality factor in the complex Ginibre ensemble yields a distribution with the finite first moment complementing recent studies by P. Bourgade and G. Doubach. Its 'bulk' scaling limit yields a distribution whose first moment reproduces the well-known result of Chalker and Mehlig (1998), and I will provide the 'edge' scaling distribution for this case as well. The presentation will be mainly based on the paper: Y.V. Fyodorov, Commun. Math. Phys. 363 (2), 579-603 (2018)
 
  Обратная связь:
math-net2025_01@mi-ras.ru
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025