Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






27th International Conference on Finite and Infinite Dimensional Complex Analysis and Applications
12 августа 2019 г. 17:00–18:00, Секция I, г. Красноярск, Сибирский федеральный университет
 


Sampling along characteristics for solutions of the telegraph system

A. Montes-Rodriíguez

University of Seville
Видеозаписи:
MP4 1,980.8 Mb
MP4 1,980.7 Mb

Количество просмотров:
Эта страница:124
Видеофайлы:12



Аннотация: For each function $a : \mathbb{R} \mapsto \mathbb{C}$ with integrable modulus on $\mathbb{R}$, we define the exponential telegraphic function as
$$ a_{\mathbb{T}} (x,y):= \int_{\mathbb{R}} a (t) \exp{(i x t + i y/t)}\ d t \qquad x, y \in \mathbb{R} $$
Every exponential telegraphic function is a continuous solution on $\mathbb{R}^{2}$ of the partial differential equation $U_{xy}+U=0$ with two independent real variables $x, y$. Conversely, for each continuous solution $w$ of the equation $U_{xy}+U=0$ on a convex compact subset $K$ in $ \mathbb{R}^{2}$ with nonempty interior, there exists an exponential telegraphic function $a_{\mathbb{T}} = a_{\mathbb{T}} (w, K)$ which coincides with $w$ on $K$ whenever $w_{x}$ and $w_{y}$ are continuous on $K$. Exponential telegraphic functions have first been studied in 2011, see [2] where it is proved that each such function can be recoverable sampled at the points $(0,\pi n), (\pi n,0)$, $n\! \in\! \mathbb{Z}\!:=\! \{...,-1,0,1,...\}$, lying on two characteristics $x=0$ and $y=0$ of the equation $U_{xy}+U=0$. In other words, it follows from $a_{\mathbb{T}} (\pi n,0) = a_{\mathbb{T}} (0,\pi n) = 0$, $n \in \mathbb{Z}$, that $a_{\mathbb{T}} (x,y)=0$ for every $x, y \in\mathbb{R}$. In this work, we provide a new proof of the fact that $a_{\mathbb{T}} (\pi n,0) = a_{\mathbb{T}} (0,-\pi n) = 0$ for all $n \in \mathbb{N}_{0}\!:=\! \{0,1,2,...\}$, implies $a_{\mathbb{T}} (x,-y)=0$ for each $x, y \geq 0$ (cp. [1]), which means possibility to restore each exponential telegraphic function in the quadrant $[0,+\infty)\times (-\infty, 0]$ by its values at the points $(0,-\pi n), (\pi n,0)$, $n\! \in\! \mathbb{N}_{0}$. We apply these results to continuously differentiable one time by each variable solutions $ v(t, x)$ and $i(t, x)$ of the telegraph system
\begin{gather*} \left\{ \begin{array}{llll} i_{x} (t, x) + C \cdot v_{t}(t, x) + G \cdot v(t, x) = 0 \, , & R - \text{resistance}, & L - \text{inductance}, & D := L G - C R \neq 0, \\ v_{x}(t, x) + L \cdot i_{t}(t, x) + R \cdot i(t, x) = 0 \, ,& C - \text{capacitance}, & G - \text{leakance}, & t \geq 0, \ x \in \mathbb{R}, \end{array} \right. \end{gather*}

with the additional restriction of the existence $T > 0$ satisfying $ v(t, 0) = i(t, 0)= 0$, $t \geq T$. It follows that such $ v$ and $i$ in the angle $|x| \leq t/\sqrt{LC}$, $t \geq 0$, $ x \in \mathbb{R}$ between the two characteristics $x = \pm t/\sqrt{LC}$ are uniquely determined by the values of $v$ or $i$ at the points $(2\pi n L C / |D| \, , \ \pm 2\pi n \sqrt{L C} / |D|)$, $n \in \mathbb{N}_{0}$, lying on these characteristics.

Язык доклада: английский

Список литературы
  1. H. Hedenmalm, A. Montes-Rodríguez, “An extension of ergodic theory for Gauss-type maps”, arXiv: 1512.03228
  2. Haakan Hedenmalm, Alfonso Montes-Rodríguez, “Heisenberg uniqueness pairs and the Klein-Gordon equation”, Ann. of Math. (2), 173:3 (2011), 1507–1527  crossref  mathscinet
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024