Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






27th International Conference on Finite and Infinite Dimensional Complex Analysis and Applications
12 августа 2019 г. 17:30–18:00, Секция II, г. Красноярск, Сибирский федеральный университет
 


Hermite–Padé polynomials for meromorphic functions on a compact Riemann surface

R. V. Palvelev

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Видеозаписи:
MP4 776.7 Mb
MP4 775.7 Mb

Количество просмотров:
Эта страница:151
Видеофайлы:22



Аннотация: Let $\mathfrak R$ be a compact Riemann surface and $\pi\colon \mathfrak R \to\widehat{\mathbb C}$ be a $(m+1)$-fold branched covering of the Riemann sphere $\widehat{\mathbb C}$, $m\ge 1$. Suppose that $f_1$, $f_2$, …, $f_m$ are meromorphic functions on the Riemann surface $\mathfrak R$ such that the functions $1$, $f_1$, $f_2$, …, $f_m$ are independent over the field $\mathbb C(z)$ of rational functions on $\widehat{\mathbb C}$. Fix a point $\circ\in\mathfrak R$ that is not critical for the projection $\pi$. Without loss of generality we can suppose that $\circ\in\pi^{-1}(\infty)$ and denote $\pmb\infty^{(0)}:=\circ$. If we choose a small enough neighborhood of $\pmb\infty^{(0)}$, then the restriction $\pi_0$ of the projection $\pi$ to this neighborhood is biholomorphic. For $j=1,\dots,m$ set $f_{j,\infty}(z):=f_j(\pi_0^{-1}(z))$ in the neighborhood of $\infty\in\widehat{\mathbb C}$. For convenience we suppose that the germs $f_{j,\infty}$ are holomorphic at $\infty$.
The Hermite–Padé polynomials of the first kind $Q_{n,0}$, …, $Q_{n,m}$ of order $n\in\mathbb N$ for the tuple of germs $[1,f_{1,\infty},\dots, f_{m,\infty}]$ at the point $\infty\in\widehat{\mathbb C}$ are defined as the polynomials of degree not greater than $n$ such that at least one $Q_{n,j}\not\equiv0$ and the following asymptotic relation at $\infty$ holds true:
$$ Q_{n,0}(z)+\sum\limits_{j=1}^m Q_{n,j}(z)f_{j,\infty}(z)=O\left(\dfrac 1 {z^{m(n+1)}}\right)\text{ as } z\to\infty. $$

In the talk we discuss asymptotic behaviour of the ratios $\frac{Q_{n,j}(z)}{Q_{n,k}(z)}$, $k,j=0,\dots,m$ as $n\to\infty$. Our research uses the approach of J. Nuttall that is based on a special “Nuttall's partition” of the Riemann surface $\mathfrak R$ into sheets. In particular, our results allow us to asymptotically reconstruct the values of a meromorphic function $f$ on $\mathfrak R$ on $m$ Nuttall's sheets (all except one) from the initial germ of $f$ at $\pmb\infty^{(0)}$ as roots of some algebraic equation of degree $m$. For this one should take $f_j:=f^j$, $j=1,\dots,m$.
The talk is based on the joint work with E.M.Chirka, A.V.Komlov, and S.P.Suetin.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024