Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






27th International Conference on Finite and Infinite Dimensional Complex Analysis and Applications
12 августа 2019 г. 15:30–16:30, Секция II, г. Красноярск, Сибирский федеральный университет
 


Discrete multiple orthogonal polynomials on shifted lattices

V. G. Lysov

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
Видеозаписи:
MP4 1,466.4 Mb
MP4 1,466.4 Mb

Количество просмотров:
Эта страница:203
Видеофайлы:43



Аннотация: There are many ways to define multiple orthogonal polynomials with respect to the classical continuous weights. The approach as in [1,2,3] preserves a kind of the Rodrigues formula, which is a very useful property. We focus on adapting this approach for the discrete case — bearing in mind the deep connection between the classical discrete and continuous orthogonality.
The talk is devoted to a new class of polynomials of multiple orthogonality with respect to the product of classical discrete weights on integer lattices with noninteger shifts. We obtain explicit representations in the form of the Rodrigues formulas. The case of two weights will be presented in more detail.
This is a joint work with A. Dyachenko (UCL Department of Mathematics, Gower St, London, United Kingdom).

Язык доклада: английский

Список литературы
  1. A. I. Aptekarev, “Multiple orthogonal polynomials”, Proceedings of the VIII Symposium on Orthogonal Polynomials and Their Applications (Seville, 1997), 99, no. 1-2, 1998, 423–447  crossref  mathscinet
  2. A. I. Aptekarev, F. Marcellán, I. A. Rocha, “Semiclassical multiple orthogonal polynomials and the properties of Jacobi-Bessel polynomials”, J. Approx. Theory, 90:1 (1997), 117–146  crossref  mathscinet
  3. Walter Van Assche, Els Coussement, “Some classical multiple orthogonal polynomials”, J. Comput. Appl. Math., 127:1-2 (2001), 317–347  crossref  mathscinet
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024