Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






27th International Conference on Finite and Infinite Dimensional Complex Analysis and Applications
12 августа 2019 г. 14:30–15:30, Секция I, г. Красноярск, Сибирский федеральный университет
 


Multidimensional Mellin transforms

I. A. Antipova

Institute of Space and Information Technologies, Siberian Federal University
Видеозаписи:
MP4 1,179.3 Mb
MP4 1,179.4 Mb

Количество просмотров:
Эта страница:240
Видеофайлы:54
Материалы:1



Аннотация: The Mellin transforms figure prominently in the complex analysis due to being the most appropriate for using the theory of residues techniques. A pair of convex domains $\Theta, U \subset {\mathbb R}^n$ encodes isomorphic functional spaces $M_{\Theta}^{U}$, $W_{U}^{\Theta}$ which are transformed to each other by the direct and inverse Mellin transforms. Domains $\Theta$ and $U$ predetermine the asymptotics of functions. Moreover, the asymptotics of the original function $f(x)\in M_{\Theta}^{U}$ is defined by singularities of its Mellin transform $M[f](z)\in W_{U}^{\Theta}$. It is the fundamental correspondence which determines the scope of application for Mellin transforms. In my talk, I will speak about properties of the Mellin transform for rational functions with quasi-elliptic or hypoelliptic denominators and about using the inverse Mellin transform (Mellin–Barnes integral) as a tool of getting the analytic continuation for algebraic functions. I also will focus on the role of the Mellin transforms in the realization of residue currents.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024